If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2-16x-18=0
a = 10; b = -16; c = -18;
Δ = b2-4ac
Δ = -162-4·10·(-18)
Δ = 976
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{976}=\sqrt{16*61}=\sqrt{16}*\sqrt{61}=4\sqrt{61}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-4\sqrt{61}}{2*10}=\frac{16-4\sqrt{61}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+4\sqrt{61}}{2*10}=\frac{16+4\sqrt{61}}{20} $
| 7)v+9/3=8 | | (2+4f)(5)= | | -6(x+4=-2(2-x)+16 | | g/11=37=28 | | x-24=125 | | 6/k+91=98 | | 6x+-16=3x+3=4x+10 | | 0.25(x+3)=0.5 | | 5x+(3+15)=45 | | 3(4x+5)-10=3+3x+2 | | x+4÷5=2 | | D=18+3h | | -15=3k+3 | | 2−4t=–7+5t | | (5x)+(x+18)=90 | | 26=2x+6.X= | | –5m+–m+11m=–10 | | x(x+1)(x+2)-3x-213=0 | | 2(1−7x)=114 | | 10+(5+m)=(10+5)+m | | 5(3x-2)+8=3x+10 | | 6z=7+5z | | 32=12+6a | | 4(y+3)+2y=48 | | 3x+42=5x-19 | | –2b+7=–b | | 7+87=j | | (5k65)= | | 14+7=10x+5 | | -6(x+2)-3=0.5(10x+2) | | 3+5a=5(a+2)-7 | | 12x–3x+27=93x= |